本书收集了最近的研究工作,解决了关于改进GANs的学习过程和泛化的理论问题,以及GANs在现实生活各个领域的最新应用。近年来,对抗性学习引起了国内外机器学习领域的广泛关注。生成对抗网络(Generative adversarial networks, GANs)作为对抗学习的主要方法,通过引入极大极小学习的概念,使得两个网络在学习过程中相互竞争,从而获得了巨大的成功和流行。它们的关键能力是生成新数据和复制可用的数据分布,这在许多实际应用中都是需要的,特别是在计算机视觉和信号处理中。本书面向人工智能领域的学者、从业者和研究学生,希望了解GANs理论发展及其应用的最新进展。
暂无讨论,说说你的看法吧