许多行业都渴望将AI和数据驱动技术集成到他们的系统和运营中。但要建立真正成功的人工智能系统,你需要牢固掌握基础数学。这份全面的指南弥补了人工智能的潜力和应用与其相关数学基础之间的表述差距。
以沉浸式和对话的风格,这本书调研了在人工智能领域蓬勃发展所需的数学,专注于现实世界的应用和最先进的模型,而不是密集的学术理论。您将探索诸如回归、神经网络、卷积、优化、概率、图、随机游走、马尔可夫过程、微分方程等主题,在面向计算机视觉、自然语言处理、生成模型、强化学习、运筹学和自动化系统的独家人工智能背景下。本书面向广泛的读者,包括工程师、数据科学家、数学家、科学家和处于职业生涯早期的人,为在人工智能和数学领域取得成功奠定了坚实的基础。
你将能够:轻松地说人工智能、机器学习、数据科学和数学的语言将机器学习模型和自然语言模型统一在一个数学结构下轻松处理图和网络数据探索真实数据,可视化空间变换,降低维度,处理图像决定在不同的数据驱动项目中使用哪些模型探索人工智能的各种含义和限制。